
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1979

Signal flow graph solution of deterministic and
stochastic linear programs
Farrokh Choobineh
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Operational Research Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Choobineh, Farrokh, "Signal flow graph solution of deterministic and stochastic linear programs " (1979). Retrospective Theses and
Dissertations. 6436.
https://lib.dr.iastate.edu/rtd/6436

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F6436&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F6436&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F6436&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F6436&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F6436&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F6436&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=lib.dr.iastate.edu%2Frtd%2F6436&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/6436?utm_source=lib.dr.iastate.edu%2Frtd%2F6436&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

INFORMATION TO USERS 

This was produced from a copy of a document sent to us for microfîlming. While the 
most advanced technological means to photograph and reproduce this document 
have been used, the quality is heavily dependent upon the quality of the material 
submitted. 

The following explanation of techniques is provided to help you understand 
markings or notations which may appear on this reproduction. 

1. The sign or "target" for pages apparently lacking from the document 
photographed is "Missing Page(s)". If it was possible to obtain the missing 
page(s) or section, they are spliced into the film along with adjacent pages. 
This may have necessitated cutting through an image and duplicating 
adjacent pages to assure you of complete continuity. 

2. When an image on the fîlm is obliterated with a round black mark it is an 
indication that the film inspector noticed either blurred copy because of 
movement during exposure, or duplicate copy. Unless we meant to delete 
copyrighted materials that should not have been filmed, you wUl find a 
good image of the page in the adjacent frame. 

3. When a map, drawing or chart, etc., is part of the material being photo­
graphed the photographer has followed a definite method in "sectioning" 
the material. It is customary to begin filming at the upper left hand comer 
of a large sheet and to continue from left to right in equal sections with 
smaii overlaps. If necessary, sectioning is continued again—beginning 
below the first row and continuing on until complete. 

4. For any illustrations that cannot be reproduced satisfactorily by 
xerography, photographic prints can be purchased at additional cost and 
tipped into your xerographic copy. Requests can be made to our 
Dissertations Customer Services Department. 

5. Some pages in any document may have indistinct print. In all cases we 
have filmed the best available copy. 

Uni 

intEmanonai 
300 N. ZEEB ROAD, ANN ARBOR, Ml 4810G 
18 BEDFORD ROW, LONDON WCl R 4EJ, ENGLAND 



www.manaraa.com

791618b 

CHOQBlNEHt FARROKH 
SIGNAL FLOW GRAPH SOLUTION OF DETERMINISTIC 
AND STOCHASTIC LINEAR PROGRAMS. 

IOWA STATE UNIVERSITY, PH.D., 1979 

Univers*^ 
MioCTilms 

International 300 N. ZEEB ROAD. ANN ARBOR. Ml 48106 



www.manaraa.com

signal flow graph solution of deterministic 

and stochastic linear programs 

by 

Farrokh Choobineh 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of 

The Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Department: Industrial Engineering 
Major; Engineering Valuation 

Approved: 

m Chargé >of Ma^ô^r work 

r the Major Department 

F< ate College 

Iowa State University 
Ames, Iowa 

1979 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

il 

TABLE OF CONTENTS 

Page 

1. INTRODUCTION 1 

1.1. Literature Review of Stochastic Linear 
Programming 2 

1.2. The Distribution Problem 4 

1.3. The Decision Problem 6 

1.3.1. Active approach 6 
1.3.2. Stochastic programs with recourse 7 

1.4. Chance Constrained Programming 9 

2. SIGNAL FLOW GRAPH SOLUTION FOR LINEAR PROGRAMMING 13 

2.1. Introduction 13 

2.2. Finding the Inverse of a Matrix by SFG 14 

2.3. Improving a Basic Feasible Solution by SFG 
Method 19 

2.4. SFG Procedures of Simplex Method 23 

2.4.1. Decision rules of SFG procedure 25 

2.5. Postoptimality Analysis by SFG 34 

2.5.1. Changes in the profit coefficients 
( C j )  3 6  

2.5.2. Changes in the resource constants 
(b.) 38 

2.5.3. Changes in the technological 
coefficients (a^j) 39 

2.5.4. Adding a new decision variable (X.) 40 
2.5.5. Adding a new constraint ^ 41 

3. THE MELLIN TRANSFORM 43 

3.1. Fundamental Characteristics 4 3 



www.manaraa.com

iii 

Page 

3.2. Mellin Transform in Statistics 46 

4. STOCHASTIC LINEAR PROGRAMMING 60 

4.1. Preliminaries 60 

4.2. Optimality and Feasibility Conditions of SLP 66 

4.3. Balanced Stochastic Linear Program 73 

5. APPLICATION OF THE MELLIN TRANSFORM IN STOCHASTIC 
LINEAR PROGRAMMING 81 

5.1. The Mellin Transform and the Simplex Algorithm 81 

5.2. SFG Solution of Stochastic Linear Program 88 

5.3. Postoptimality Analysis and Solution Methods 
Evaluation 97 

6. CONCLUSIONS AND RECOMMENDATIONS 98 

7. BIBLIOGRAPHY 100 

8. ACKNOWLEDGMENTS 108 

9. APPENDIX A: PROBABILITIES OF POSSIBLE BASES OF 
EXAMPLE 4-1 FOR DIFFERENT RANGES OF R, 
AND R^ 109 

10. APPENDIX B: MELLIN TRANSFORMS FOR SELECTED 
PROBABILITY DENSITY FUNCTIONS 113 

11. APPENDIX C; SIGNAL FLOW GRAPHS 115 

11.1. Basic Concepts and Terminology 115 

11.1.1. Terminology 116 
11.1.2. Path inversion 119 
11.1.3. Method of solution of SFG 122 



www.manaraa.com

1 

1. INTRODUCTION 

The deterministic linear programming formulation of 

real world models possesses some Inherent unrealistic char­

acteristics. This is due to coefficients in the model which 

are generally subject to random variations. In the last two 

decades, linear programs with some coefficients subject to 

random variations have received considerable attention. 

These have been studied under different names in­

cluding probabilistic linear programming,stochastic linear 

programming, and linear programming under uncertainty. In 

this study we use the term stochastic linear programming 

(SLP) to identify a linear programming model with random 

coefficients. 

Although the concept of stochastic linear programming 

seems to be appealing, the solution of the SLP model raises 

some serious questions with regard to the computational and 

theoretical aspects of the model. The specifics of some 

of these questions will be addressed in later 

chapters. 

Although the primary emphasis of this study is on 

stochastic linear programming, two other topics have been 

discussed. Chapter 2 presents a formal methodology for 

solving deterministic linear programs by the Signal Flow 

Graph (SFG) method. A procedure to find the inverse of a 
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matrix by utilizing the Mason's gain formula of SFG is also 

presented in Chapter 2. Chapter 3 reviews the application 

of the Mellin transform in statistics. The review of 

literature for these two topics are contained within their 

respective chapters. Chapter 4 presents an intuitive 

introduction of stochastic linear programs. In this chapter 

a new class of stochastic linear program is introduced and 

some of its properties are described. The review of litera­

ture of this topic is given in Sections 1.1 through 1.4. 

Chapter 5 combines the ideas of Chapters 2, 3, and 4 to 

present another view of solving stochastic linear programs. 

1.1. Literature Review of Stochastic 
Linear Programming 

In the classical linear programming (LP) model: 

max Z = cX (1.1-1) 

subject to (s.t.) 

AX = b 

X > 0 

where : 

X = nxl decision vector 

c = Ixn profit vector 

b = mxl resource vector 

A = mxn technological coefficient matrix 
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The parameters in the set (A, b, c) are fixed known numbers, 

and it is required to determine an optimal decision vector 

X* subject to the specified constraints. If some or all of 

the elements in the set (A, b, c) are stochastic, as in real 

life problems, then classical methods of linear programming 

will fail to produce a sensible optimal solution. Stochastic 

linear programming (SLP) is concerned with problems arising 

when some or all elements of the set (A, b, c) are random 

variables with known probability density functions. Mandansky 

(1960) identified two types of stochastic linear programming: 

a) "Wait-and-see": In this type of SLP problem one waits 

till a realization of the random vector 0, where 0 denotes 

an observation of the set (A, b, c), is made and then solves 

the deterministic LP problem based on the observed random 

variable 0. By utilizing several observed values of 0, 

either exactly or approximately, the probability distribution 

of the maximum value of the objective function and of optimal 

decision vectors can be derived. Tintner (1955) classified 

the "Wait-and-See" type of SLP as the "distribution problem." 

b) "Here-and-Now": In this type, decisions concerning 

activity vector X (or on a "strategy" for X) is made in 

advance or at least without waiting for the realization of 

random vector 0. The "Here-and-Now" type has also been 

called the decision problem of SLP. 
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1.2. The Distribution Problem 

The basic approach to solve the distribution problem 

of SLP is to generate all possible combinations of the 

basis, and then determine the probability distribution of 

the objective function. Tintner (1955) was among the 

first to investigate this type of problem. His basic 

approach was to take all the possible combinations of 

the realizations of 0 and solve the respective deter­

ministic LP problem. He then used the method of sample 

moments to fit a probability density function to the 

obtained values. The shortcomings of this technique is 

twofold; first, a large number of deterministic LP problems 

have to be solved and, second, the derived distributions 

are only an approximation of the actual distribution. 

Bereanu (1963) considered an SLP where 0 is a function of 

only one random variable. He obtained a closed-form 

expression for the distribution function of max (Z). 

Bereanu (1966a, 1966b) also devised a method to determine 

the distribution of the optimal value of the objective 

function for the case when the elements of vector c or 

vector b are random variables. Bereanu assumes that the 

random variables have finite lower and upper bounds, and 

he fixes the random variables at their lower bounds. Upon 
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finding the optimal basis associated with the lower bounds 

of the random variables, he determines the ranges over which 

the optimal basis remain unchanged using the sensitivity 

analysis technique of parametric linear programming. He 

changes the basis and applies the sensitivity analysis to 

the new bases. This process is repeated until all the optimal 

basis have been investigated. Then he utilizes the informa­

tion so obtained to compute the distribution of the optimum 

value of the objective function. 

Prekopa (1966) has given sufficient conditions for the 

optimal value of the objective function to be normally 

distributed. Ewbank et al. (1974) propose a method for 

finding a closed form expression for the cumulative distribu­

tion function of the maximum value of the objective function 

for the cases when elements of vector c or vector b are 

random variables. The way in which this method differs from 

previous ones is only in the procedure for determining the 

probability of a basis being optimal. 

Bereanu (1976) gives a sufficient condition that the 

optimal value of a linear program be a continuous function 

of its coefficients, and proves a necessary and sufficient 

condition that an SLF has optimal value. 
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1.3. The Decision Problem 

The general approach to solve this type of problem has 

been to select some criterion and then solve the equivalent 

deterministic program. These equivalent programs are 

normally convex programs which in general are nonlinear. 

Dantzig (1955) was among the first to introduce this type of 

problem and he named it "linear programming under uncer­

tainty." In the last two decades several classes of 

decision problems have evolved. Figure 1-1 depicts 

the major classes of decision problems. 

1.3.1. Active approach 

Tintner (1960) and Sengupta et al. (1963a,b) 

developed the active approach of solving SLP. The basic 

idea behind this approach is to introduce additional 

decision variables defined by the resource allocation 

matrix D = [d^j] (i = l,...,m; j = l,...,n). The model of 

(1.1-1) is modified as follows: 

max Z = cx 

s.t. AX ̂  bD 

X ̂  0 

where (A, h, c) is a random vector 
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E d.. = 1 

J=i 

The decision-maker has to decide on a fixed value of d^^ to 

maximize the objective function based on a specific criterion. 

Of several possible criteria one is to maximize the ex­

pected value of the objective function. 

1.3.2. Stochastic programs with recourse 

Dantzig's (1955) model "linear programming under un­

certainty" assumes that the elements of vector b of model 

(1.1-1) are random variables with known distribution func­

tions. The model considered is that of finding the optimum 

value of vector X in the following model. 

Z = min E[CX + min g y ] •  
X y 

s.t. AX = b 

TX + WY = P (1.3-1) 

X ^ 0, y ^ 0 

In the above model the random parameter space of each b^ has 

been divided into two disjoint classes, one satisfying the 

constraints and the other not satisfying the constraints. 

If the latter is nonempty, then with a finite probability the 

ith constraint is violated. For the first stage of the 
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problem the values of X and b are assumed to be known, and 

supposing a penalty cost (g%) is known for each ith constraint 

violation then the mean total penalty cost (gy) is minimized. 

If we denote this minimum by Q(X,b), then the objective function 

of second stage becomes 

Z = min E[CX + Q(X)] X ̂  0 

where 

Q(X) = EQ(X,b) 

Note in the two stage formulation of (1.3-1) the selection of 

vector X is optimal if it leads to the minimum of expected 

cost including penalty cost of y. Thus the central emphasis 

is on the problem of finding an optimal X given the penalty 

costs of constraint violation and the sequential observations 

of the random elements of b. Walkup and Wets (1967) studied 

the natural extension of Dantzig (1955) two-stage model to 

the more general case. In model (1.3-1) Walkup and Wetts 

(1967) assumed that not only b is a random variable, but 

also C, g, T and W as well as P are random variables. They 

coined the name of "stochastic programs with recourse" for 

their proposed model. We note that two stage programming is 

a special case of stochastic programs with recourse. Wets 

(1972) has explored the generalization to more than two 

stages under the assumption that the random variables in 

any stage are independent of the random variables in the 
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preceding étages. 

1.4. Chance Constrained Programming 

Chance constrained programming (CCP) can best be 

described as an attempt to optimally allocate resources in 

situations where Triplet (A, b, c) is random, and the 

decision-maker requires one or more constraints (including 

the objective function) to be satisfied. However, not all 

constraints may be satisfied every time. Charnes and Cooper 

(1959) pioneered this concept, and during almost the last 

two decades their original idea has been expanded and 

strengthened. 

A chance constraint admits as many interpretations as 

does the probability operator, e.g., total or conditional, 

and also the decision-maker might employ different func-

tionals such as minimization of expected cost, maximization of 

the probability of some event. Hence CCP is a flexible 

tool, and the choice of the suitable and analyzable model 

of a particular situation rests upon the management scientists. 

The basic idea behind the solution procedures of CCP is to 

solve the equivalent deterministic program which in almost 

all cases are nonlinear programs. 

The basic model proposed by Charnes and Cooper (19 59) 

assumes that only vector b has random variation. The model 

of (1.1-1) with chance constraint becomes 
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max Z = cX 

s.t. P{AX £ b} >_ 1-a 

X ^ 0 

where the ith constraint 

n 
P{ E a..x. < b.} > 1-a (i = l,...,m) 
j=l 3 - 1 -

for instance, is realized with a minimum probability of 

1-a^ (0 < < 1) . The case of joint chance-constraints in 

CCP (i.e., where the restriction is on the joint probability 

of a multivariate random event) has been investigated by 

Miller and Wagner (1965) and by Prekopa (1970). The paper 

by Prekopa (1970) investigates the regions in the multi­

variate normal space where the transformed problem remains a 

concave program and develops an algorithm based on feasible 

direction methods. Some of the most widely used functionals 

are the ones introduced by Charnes and Cooper (1963). They 

included: a) the "E-model" where the objective function is 

max E [CX]; b) the "V-model" where the objective is to 

minimize the variance of the objective function, i.e., 

min E[CX-CQXQ]^; c) the "P-model" where it is desired to 

maximize the probability 3 that CX does not exceed a given 

constant, e.g., C^XQ, i.e., max P{CQXQ>_Ca} ̂  3- The CCP 

employs a preassigned class of admissable stochastic 

decision rules which represent the operational prescriptions 
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of the model. 

Eisner, Kaplan, and Soden (1971) discuss the admissible 

decision rules for the E-model. Also Garstka and Wets (1974) 

present a survey of decision rules in stochastic programming. 

Mandansky (1960) and Mangasarian (1964) by use of in­

equalities have demonstrated the relationship between some 

widely used functionals. These results could be useful in 

establishing some upper or lower bound on the objective func­

tion although these bounds might not be very sharp. 

It should be mentioned that CCP has the basic diffi­

culty that the statistical distribution of the objective 

function becomes very complicated if random variables are not 

distributed normally. Hence most practical situations re­

ported in the literature possess this assumption. 

Figure 1-1 portrays the major classes of stochastic 

linear programming and their relationship to each other. 
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Figure 1-1. Major classes of stochastic linear programming 
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2. SIGNAL FLOW GRAPH SOLUTION FOR 

LINEAR PROGRAMMING 

2.1. Introduction 

Linear programming deals with the maximization or 

minimization of a linear function, called an objective func­

tion, in the presence of a set of linear equations called 

constraints. Without loss of generality a linear program 

can be represented as 

Maximize Z = CX 

Subject to: AX = b 

where : 

X is an nxl vector of decision variables; C is an 
Ixn vector of profit coefficients; A is an mxn 
matrix of technological coefficients; and b is an 
mxl vector of resources. 

-1 
The solution to the above problem is Xg = B b where X^ 

— 1 

inverse of matrix B, a submatrix of A associated with the 

basic variables. In this chapter we present a graphical 

method to solve the LP problem using signal flow graph (SFG) 

(for a review of SFG see Appendix C). Tonomura (1972) was the 

first to introduce without proof the basic application of SFG 

in linear optimization, the work presented in this chapter 

is based on his work with some modification and extensions. 
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2.2. Finding the Inverse of a Matrix by SFG 

Consider a square matrix A = [a^^] (i = 1, m; j=l, m), 

from matrix theory it is known that A exists if and only 

if |A| 7^ 0. To determine the inverse of matrix A we pro­

pose the following method. 

1. Augment the matrix by a unit vector i.e., (A|l) 

where 1 is an mxl vector of positive ones. 

2. Normalize the augmented matrix (A|l) by dividing 

all elements in row i by a^^(i = l,m). Division 

by zero is not allowed. So if a^^ of row i 

(i = l,m) is equal to zero, interchange the columns 

of matrix A such that the elements of the main 

diagonal are not equal to zero. If such a 

matrix can not be found the rank of the matrix 

A must be less than m and the inverse does not 

exist. Let B denote the normalized augmented 

matrix which can be represented by its columns 

as (bi,b2,...,b |b where b. = |ii (i = 

1 l,m; j=l,m) and b^^^ = -— (i=l,m). Let us call 
ii 

the bj (j=l,m) the base columns, and b^^^ the 

augmented column. 

3. Construct a graph consisting of 2m nodes, m 

nodes correspond to base columns b^ (j=l,m) 

and m nodes correspond to the elements of augmented 
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column, This graph can have a maximum of 

mm-m+m = mm branches. The transmittance (trans-
Yi 

mittance T.. = — represents the linear dependency 
31 Xj 

between a dependent variable y^ and an indepen­

dent variable xj. T^^ is the gain from node x^ 

to node y^^. See Appendix C) of the branches 

between the jth base column node and other column 

nodes are the negative elements of the jth row 

of matrix B = [buj] (i = l,m; j=l,m, i^g), and 

these branches emanate from the column nodes 

b^ (i=l,m, i?^j) . For each column node b^ there 

exists a corresponding augmented node b. ,,, D fOi+x 

and these two nodes are connected with a branch 

from the augmented node to the column node. The 

transmittance of each branch is equal to the jth 

element of the column vector b ^ (i=l,m) 

as shown in Figure 2-1. 

4. Using Mason's gain formula of SFG (see Appendix 

C) calculate the transmittance from the augmented 

column nodes bj (j=l,m) to the base column 

node b. (i=l,m) i.e., T, • (i=l,m, and for 
^ °j ,m+l^i 

all j). The vector of T, = T.. (i=l,m) 
j,m+l i 

will be the ith row of the matrix A 
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-Q 
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Figure 2-1* Signal flow graph representation of a matrix 
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Example 2.2-1 illustrates the proposed solution method of 

finding the inverse of a matrix by SFG. 

Example 2.2-1 ; 

Given matrix A = [a^j] (i=l,2, j=l,2) find A -1 

Step 1: 

(All) = 
^11 ^12 

^21 *22 

1 

Step 2 : 

. B = 

Step 3: 

( 1 lu 1 

*11 *11 

*21 1 1 

I *22 *22 
\ 

*22 
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Step 4; 

^11 _ ^22 

^13^^! ^ ^12*21 ^11^22*^12^21 

^11^22 

^12 

T, = T, ^11^22 _ "^12 

^23^^^ ^ ^12^21 ^11^22""^12^21 

^11^22 

^21 

T = T - *11*22 _ -*21 
^13"^^2 ^ ̂  *12*21 *11*22"*12*21 

*11*22 

. _ T - *22 _ *11 
^23 ̂ 2 22 ^ *12*21 *11*22**12*21 

*11*22 

Due to the equivalence between Cramer's rule of solving a 

system of equations and Mason's formula (see Appendix C), 

the SFG method of finding an inverse of a matrix is similar 

to the adjoint method of finding an inverse. However, 

the SFG method can be superior to the adjoint method where 

the matrix A has a high degree of sparsity. 
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2.3. Improving a Basic Feasible Solution by SFG Method 

Regardless of the method of solution used, the basic 

results of theorems of linear programming remain unchanged. 

But the way one arrives at these conclusions is a function 

of the method used. In this section we develop the condi­

tions of improving a basic feasible solution which in 

concept is identical to the simplex algorithm, but due to 

the properties of SFG it differs in its appearance. 

Let us consider the following linear programming 

problem. 

Problem I: 

maximize (max) Z = C X 

subject to (s.t.) AX = b 

X > 0 

Where A is a mxn matrix with rank m; C is a Ixn vector, and b 

is an mxl vector. 

Suppose that there exists an arbitrary feasible solution 

X = (y ) to the Problem I, then X >0 and X >0. Thus Problem B N 

I can be written as follows; 

"B s.t.: (B,N) (") = b 
N 

Xb>0' 
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or 

Z = CgXg 4- C^Xw (2.3-1) 

S . t . :  B X g  +  N X j j  =  b  ( 2 . 3 - 2 )  

Multiplying Equation (2.3-2) by B ^ on the right hand 

side, and rearranging obtains 

Xg = B"^b-B"^N X^. (2.3-3) 

Let 

Tjj = -b"^N ard = B~^. 

Substituting the above in Equation (2.3-3), the basic 

solution becomes 

= V + % (2.3-4) 

and the optimal value can be written as 

Let 

^0 = =BV 

then 

Z = 2o + 'W=N>=Sl 

and denoting fay 
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where 

(2.3-5) 

(^NZ)] = S^Vj + Cj 

and K = {j|Xj is nonbasic}. Since our objective is to maxi­

mize Z, it is to our advantage to increase the whenever 

(Tj^Z^ j [i.e., Cg (Tj^) j+Cj>0] . The greatest increase 

in Z will occur if the X^ which has the largest value of 

(T^n)^ is selected. W/j J 

As Xj is increased, from its present level of zero, the 

current basic variables must be modified. Hence, 

s = V + (2.3-6) 

where (T^jj is the jth column of matrix associated with 

the nonbasic variable X.. Denoting the components of T b J G 

and (Tjj)j by and TNl'^N2''''^Nm respectively, 

the Equation (2.3-6) is shown as follows; 

X Bl 

B2 

X. Br 

X 
'Dm m 

C T N1 
T N2 

T Nr 

^Nm 

X] (2.3-7) 

2 0/ then X^^ increases as X_. increases, thus X_, 
or 

continues to be nonnegative and X^ can increase without 

bound. If < 0, then Xg^ will decrease as X^ increases. 



www.manaraa.com

22 

In order to satisfy the nonnegativity condition, X_. is in­

creased until the first basic variable X reaches zero. o JT 

Further examination of Equation (2.3-7) reveals that the 

first basic variable reaching zero corresponds to the 

maximum of b^/T^^ for negative More precisely, 

b. b 
îpl- = maximum {=^: T .< 0} = -X.. (2.3-8) 
•^Nj l<r<m ^Nr ^ 

b. 
In the absence of degeneracy (i.e., b. > 0) — < 0, and 

b. ] ^Nj 
hence X. = -

^ Nj 

From Equation (2.3-5) and the fact that = 

Cg(Tjj)j + Cj > 0, it follows that Z>ZQ and the objective 

function strictly increases. 

The commonly used simplex algorithm moves also to a 

better feasible solution after each iteration. The simplex 

algorithm accomplishes this by changing the value of one 

judiciously selected nonbasic variable from its present 

value of zero to some nonnegative value such that the 

objective value is increased the most. Like SFG method, 

the simplex algorithm tries to change the value of only 

one nonbasic variable at each iteration. The present 

basic variable that leaves the basis is selected in such 

a manner that the feasibility of the new basic variables 

is assured (for a derivation of simplex algorithm, see any 
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linear programming textbook; e.g. Randolph and Weeks 

(1978)). From the foregone discussion the similarities 

between SFG method and simplex algorithm are evident. 

2.4. SFG Procedures of Simplex Method 

To solve the LP Problem I, as defined in Section 2.3, 

we need to establish some graphical conventions and also 

recast some of the terminologies of the simplex method 

into the SFG parlance. Table 2-1 defines the graphical 

symbols used in SFG procedure. 

Table 2-1. Graphical symbols of SFG LP 

Symbol Description 

Resource or supply node 

Basic variable node 

Nonbasic variable node 

Objective variable node 

Interrelationship between the above nodes 

In order to obtain the SFG representation of LP Problem I, 

where the number of decision variables exceeds the number 

of equations i.e., m<n, we must decide upon which m elements 

of demision vector X will form the basic variables vector Xg. 
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When this decision has been made Problem I can be written 

as follows 

Xg 
max Z = (C„|C )( ) 

^ N 

V 

B, S.t. (B|N)( °) = b 
N 

Using the SFG terminology Z and X are the dependent vari-

ables (see Appendix C). Putting the above LP model in SFG 

standard form we obtain 

max Z CgXg + 

s.t. Xg = -b"^NX^ + B~^b (2.4-1) 

Xg>0, x^o 

Using the symbols of Table 2-1 the SFG of Equation 2.4-1 

is depicted by Figure 2-3. 

Figure 2-3. SFG representation of Equation 2.4-1 
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The value of dependent and independent variables can be 

found by determining the transmittance from the source 

nodes to the desired variable and then multiplying by the 

value of the source node. 

^ = B-^b 

Z = = CgB-lb 

where : 

T^^X = Tg = [T^j] (i=l,m; j=l,m) 

The element T^^ is the transmittance from resource j to 

basic variable i. 

The element T . is the transmittance from resource j to 

the objective variable Z. 

2.4.1. Decision rules of SFG procedure 

1. Select the nonbasic variable •(i=n-m,n) to enter 

the basis such that its transmittance to S has the largest 

positive value. In other words, select that nonbasic 

variable which contributes the most to the value of the 

objective function: 
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max [Tx.->zl'^X.-z"" = keK (2.4-2) 
leK XI K 

where 

K = {i|X^ is nonbasic}. 

Equation 2.4-2 implies that keK is a candidate to enter 

the basis. 

2. Select the basic variable Xj (j=l,m) to leave the 

basis such that the ratio of the current value of Xj 

(i.e., ) to the transmittance from the candidate 

variable X. to X. (i.e. T ^ ) is the largest negative value 
X ] 3 

or mathematically; 

then 

Let Rj 
J ^ J 

max[R.IR.<0] = X. lem (2.4-3) 
jem J ] 

where 

m = {jjx. is basic} and T» is the kjth element 

of matrix T^. Equation 2.4-3 implies that X^, lem is a 

candidate to leave the basis as was demonstrated in 

Section 2.3. 

3, A current basic feasible solution is optimal 

if Tjj ^2<0 V ieK. In the following example, 2.4-1, the 

SFG procedure of solving a LP problem is illustrated. 



www.manaraa.com

27 

Example 2.4-1: 

max Z = 5X^ + 4X2 

s.t. + 3X2 + X3 = 6 

ax^-xj + X, = 4 

Xĵ , Xj, Xj, x, > 0 

Stage 1; 

max Z = 5X^ + 4X2 

s.t. X^ = -X^ - 3X^ - 3X2 + 6 

X^ = -2X^ + Xg + 4 

Figure 2-4. SFG representation of stage 1 of Example 
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2̂ = (TĜ X,) <®> + (T4..X2' = » 

3̂ = 'Vxj' + "̂ 4̂ X3' '̂ ' = <̂ > (6) + 0 = 6 

X4 = (Tg^x^) (6) + (T4_^x ) (4) = 0 + (1) (4) = 4 

Z = (Vz> <®' + <'̂ 4-.z' <̂ ' = 0 

Determination of entering and leaving variables: 

%-Z = 5 

Since 

MaxCT^ ^g] =5, is a candidate to enter 

the basis. 

T  =  - 1  
X1+X3 

Rj = ̂  = -6 

R4 = r| = -2 

Note that 

MaxfRg; R^] = -2 so X^ is a candidate to leave the basis, 
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Stage 2 ; 

max Z = 5X^ + 4X2 

s.t. Xg = -X^ - 3X2 + 6 

= & *2 - i *4 + 

1/2 

-1/2 

1/2 

Figure 2-5. SFG representation of Stage 2 of Example 2.4-1 

^1 = (6) + (4) = 0 + (i) (4) = 2 

^2 (4) = 0 

X3 = (Tg+Xg) (G) + (1^4^X3^ (4) = (1) (6) + (^) (4) = 4 

"4 ~ ("6+X.) ° ° 
4 4 

Z = (6) + (4) = 0 + (|) (4) = 10 
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Determination of entering and leaving variables : 

TXz+Z = ^ 

T = zA 
X4+Z 2 

Therefore, Xg is a candidate to enter the basis 

*1 =-#- = 4 

^ " 2 2 

*3 - -f- - ̂ 7 

Therefore, is a candidate to leave the basis 

Stage 3; 

max Z = 5X^ + 4X2 

s.t. X2 = -i Xj - I X3 + i(6) 

*1 = & *2 - i *4 + 
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Figure 2-6. SFG representation of 

XI = IT, 

Stage 3 of Example 2.4-

1 1 

A->X = ( ^1 ) (6) + ' ̂ 
* *1 1+i 

(_±_) (4) = 

X 
1 

2 " (T6.X,)(G) + (T4+X,)(4) 

X3 = (Tg+Xg) (4) = 0 

2 = (Ts+z) " (Ti+z! (-) 

_1 

i-^) (6) + ( ̂  
1+- .4' ™ • ' 
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(%) (4) + {h {h (5) 
Z = ^ ) (6) 

1 + è 

(4) (5) + {h (-%) (4) 
+ (— ) (4) 

: + ? 

= {^) (6) + (i|) (4) = 

Determination of entering and leaving variables. 

(4) (4) (-i) (?) (6) -13 

(-i)(5) (-i)(-T)(4) 
1 A  = - 4  

Since ^2 and are nonpositive the present basic 

14 8 solution = —g and Xg = ^ is optimal. 

The basic equations of solving LP problems by SFG pro­

cedure is summarized below 

m 
Xi = Z (Tfc, .y )b. V j (2.4-4) 
J i=l ^i ^ 

m 
E 
i=l "i 

Z = 2 (Tb.+z)bi (2.4-5) 

= C^-Z^ = ^2 V len (2.4-6) 
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(B ^) . = [T, y 1 (i=l,m) and V(i|x. is basic) (2.4-7) 
J i j ] 

where (B ^)^ is the jth column of B ^. An interesting 

observation can be made. 

Recall that dual variables y^, (i=l,m), are defined 

8 z * as y. = XT—, where Z* is the optimal value of Z. Assuming 
i 

an optimal solution has been determined. Then differentiating 

Equation 2.4-5 with respect to b^ obtains 

Ht = (2.4-8) 

On the other hand y = C^B and the negative of the dual 

variables can be observed from the C-row (C = C. - C_B P.) 
j ® D 

of the final tableau of the simplex method under the 

columns of the starting solution. Thus from Equation 2.4-6 

the dual variables are: 

Yi = -Tx.^z (2.4-9) 

where i is the index of an initial basic variable. Since 

the right hand side of Equations 2.4-8 and 2.4-9 are 

equivalent, it is possible to save some computational 

effort. 
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2.5. Postoptimality Analysis by SFG 

In most practical LP problems, some of the problem 

data are estimated and are not known exactly. The decision­

makers are interested in knowing: 1) the range of problem 

data such that the optimal solution does not change, 2) 

what effect does an addition of a new decision variable 

or constraint have on the optimal solution. In particular 

the following variations in the problem will be considered. 

a. Changes in the profit coefficients (Cj). 

b. Changes in the resource constants (bu). 

c. Changes in the technological coefficients (a_j). 

d. Adding a new decision variable (X^). 

e. Adding a new constraint. 

In this section, we shall see how to minimize the additional 

computations necessary to study the above changes by SFG 

procedure. First,- consider an example problem = 

Example 2.5.1; 

max Z = 5X^ + 4X2 + SXg 

s.t. + 3X2 + 4Xg + X4 = 6 

2X^ - X2 + Xg + Xg = 4 

Xj 2 0 j = 1.-5 

The final SFG of this problem is shown below. 
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1/3 1/2 -1/3 

1/2 

-1/3 

-1/2 =4/3 

Figure 2-7. Final SFG of Example 2.5.1 

Where the optimal solution is: 

1 p o 17 7 
= ̂ ; Xg = y; Xg = Xg = O; and Z = ̂  . 

The above example will be used to illustrate the SFG pro 

cedure of postoptimality analysis. 
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2.5.1. Changes in the profit coefficients (C^) 

Variations in the profit coefficients of the objective 

function may occur either in the profit of basic or non-

basic variables. These two cases will be treated separately. 

Case 1; Changes in the profit coefficient of a basic 

variable. 

Suppose the decision-maker is interested in knowing 

the effect of changes on the profit coefficient of basic 

variable of Example 2.5.1. It is clear that the varia­

tion on C^ from its present value of 5 might change the 

composition of the optimal solution. To determine the 

range of variation on C^ such that the optimal basis 

does not change, the transmittance of the branch from 

to Z, on the final SFG is replaced by C^ and the trans­

mittance from all nonbasic variables to the objective vari­

able Z is calcula bed. In oifdêr £ù'£ tiiê Optimal basis to 

remain unchanged, all these transmittances must be less 

than or equal to zero. In other words 

Tx^+2 1 0, keK (2.5-1) 

Referring to Figure 2-7 the range of variation on C^ can 

be determined using Equation 2,5=1, 
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3(l+^) + (-^) (C^) + (-^j (4) + (-^) (4) + (—I") (^) (C^) 

° TTl 
1 0 

2 -1 

(-|) (4) + (-i) (i) (C,) 
V ° 1 + 1 1 0 ̂  <=1 i -8 

(-i) (C,) + (-i) (-i) (^) 4 
= ^,1 1 0  ̂  c, > i  

Since each inequality must be satisfied to maintain opti-

4 mality, _> 

4 Hence, Figure 2-7 remains unchanged as long as ^ y. 

Case 2; Changes in the profit coefficient of a nonbasic 

variable. 

One might be interested in the range of variations on 

a nonbasic variable such that the optimal solution remains 

optimal. As an example consider the range of C^ of Example 

2.5-1. We use the final SFG of Figure 2-7, and replace 

the transmittance of the branch between and Z. In 

order for the optimal basis to remain the same must be 

less than or equal to zero. From Figure 2-7 
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Cg (1+^) + (-^) (5) + (-^) (-j) (4) + (~) (4) + (—I") (^) (5) 

'"3- = —I 

< 0 C_ < 9. 
— ~ 3 — 

Therefore, the optimal basis remains the same as long as 

C3<9. 

2.5.2. Changes in the resource constants (bu) 

In the Example 2.5.1 suppose we wish to determine 

the range of variations of one of the resources such that 

the final SFG of Figure 2-7 remains unchanged. Assume we 

are interested in the range of the first resource, b^. 

The changes on b^^ should be limited to values for which we 

maintain the feasibility of the optimal basis, i.e. 

Xg = B ^b ^ 0 or in SFG terminology using Equation 2.4-4 

m 
X. = E (T, )b. >0 V(-ilX. is basic) 
3 i=i ^ ] 

Referring to Figure 2-7 by substituting b^^ for 6 in the 

left hand side resource node, and using the above condition 

we obtain 

b +12 
+ (4) = > -12 

2b,-4 
2̂ = (Tb̂ .X,) + = -4— i 1 2 

Since each inequality must be satisfied to assure feasibility. 
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Thus Figure 2-7 remains unchanged as long as . 

2.5.3. Changes in the technological coefficients (a^.) 

Consider Example 2.5.1, the equations of the final 

SFG of Figure 2-7 are: 

Z = 5X^ + 4X2 + 3X3 (2.5-2) 

Xg = - 4X3 - X4 + 6) (2.5-3) 

Xi = •|(X2 - X3 - Xg + 4) (2.5-4) 

Two possible cases may be distinguished in the studying of 

the variations of a^j: 1) is an entry of a nonbasic 

variable column, 2) a^^j is an element of a basic variable 

column. These two cases will be treated separately. 

Case 1; Changes in the technological coefficient of a 

nonbasic variable. 

Suppose the decision-maker needs to know the range of 

coefficient of X3 in the Equation 2.5-3 (i.e., for 

which the optimal basis remains the same. It is clear 

that the variation of a^3 will have an effect onC = C3 -

CgB ^^3# and in order for the basis to remain unchanged 

C3 must be nonpositive. Using Equation 2.4-5, and replacing 

the transmittance of the branch between nodes X3 and X^ 

of Figure 2-7 by -a^^/3 we obtain; 
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3(l+|) + (-|) (5) + (-|) {-|) (4) + (-^) (4) + (-^) (i) (5) 

'"3" = TTÎ 

< 0 1 XI 

Hence, the optimal basis remains the same for value 

=13 2 

Case 2; Changes in the technological coefficient of a 

basic variable. 

When the a^j entry of a basic variable column changes, 

the range of a^j is of no interest to us. But rather we 

are interested in knowing whether the optimal basis will 

remain unchanged. For example, we might want to know the 

effect of a new coefficient of in the second constraint 

(ag^) of Example 2.5.1, on the optimal basis. A new value 

for alters the composition of B , and perhaps it is 

easier to solve the problem from the beginning rather than 

using the final SFG. 

2.5.4. Adding a new decision variable (X^) 

Suppose that a new decision variable X^^^ with unit 

profit C^^^ and technological coefficient column a^^^ is 

considered to be added to the present decision variables 

of Example 2.5.1. The final SFG Equations 2.5-2, 2.5-3 and 

2.5-4 must be modified to accommodate this addition. 
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Modifying Equations 2.5-2 and 2.5-3 and 2.5-4 we obtain: 

Z = 5X^ + 4X2 + 3X3 + CGXG (2.5-5) 

XG = J(-XJL - 4X3 - X4 - A^GXG + 6) (2.5-6) 

= ilX; - *3 - *5 - *26*6 + 

Using the above equations, the final SFG of Figure 2-7 

should be changed to represent the addition. This will be 

accomplished by adding a new nonbasic node for Xg, and 

three branches emanating from it. These branches will 

originate at X^ and terminate at Z, and X^ with trans-

mittances Cg, -a^g, and -agg respectively. Now we have 

to determine whether Xg is a candidate to enter the basis, 

and this can be done by evaluating T» If T^ is non-

positive, then the optimal basis will not change, on the 

other hand if T» is positive, we proceed with usual SFG 

iterations until an optimal solution is attained (if one 

exists). 

2.5.5. Adding a new constraint 

Addition of a new constraint can affect the feasibility 

of the optimal solution only if it "cuts away" the optimal 

point, that is, the new constraint is not satisfied. Thus, 

the first step is to check whether the new constraint is 

satisfied by the present optimal solution. If it is 
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satisfied then the optimal basis does not change, and the 

constraint is redundant. Otherwise, the final SFG should be 

modified to accommodate the new constraints and then feasi­

bility of the new solution should be checked. For example, 

suppose in Example 2.5.1 a new constraint a^^X^ + a^gX^ 

^33^3 + Xg = bg is added to the set of constraints. Further, 

suppose Xg is a slack variable with Cg = 0. Treating Xg 

as the dependent variable we will add a new basic variable 

node to the SFG of Figure 2-7 with the incoming branches 

to this node originating from nodes X^, X^, and X^. Using 

Equation 2.4-4 we can check the feasibility of Xg, which 

should be infeasible. Now we can use dual simple method 

to achieve feasibility. In this case Xg is a candidate 

to leave the basis, and to determine the incoming variable 

we use the following equation 

'̂ X .-̂ Z 
max (=-3 s T — < 0) (2,5-8) 

^X.+X. ^i Xj 

where X^ is the leaving basic variable, and (i|Xj is non-

basic) . 

The validity of Equation 2.5-8 can be verified by 

using a similar procedure as described in Section 2.3. 
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3. THE MELLIN TRANSFORM 

Mellin transforms are useful in transforming the 

products and quotients of functions into algebraic form, 

and been used in solving the nonlinear differential 

equations. 

In this chapter we attempt to explain the properties 

of the Mellin transform. In particular. Section 3.1 states 

the fundamental characteristics of the Mellin transform, and 

Section 3.2 demonstrates the properties of the Mellin trans­

form in the field of statistics. Properties 1 through 

7 are based on the work of the earlier authors (e.g., 

Epstein (1948)), and properties 8 through 12 are extensions 

of the previous results. 

3.1. Fundamental Characteristics 

The Mellin transform of a continuous positive function 

f(x) is defined as: 

M(f(x)) = Fg(x|S) = x^ ^ f(x)dx x>0 (3.1-1) 
0 

where s is a complex variable. 

The inversion formula to recover f(x) given Fg(x|s) is 

. /-a+ib _ 
f(x) = ^—- lim X F-(x|s)ds (3.1-2) 

b-^œ Ja-ib 
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where 1 = and integration is over the complex plane. 

In practice, the analytic recovery of f(x) from Fg(x|s) may 

become very complicated if not impossible. However, 

numerical integration often can be used to recover f(x). 

The Mellin convolution of two continuous functions f^(x) 

and fgtx), 0_<x<«', is defined as 

h(x) = " 1 x  ^ fg Af, (y)dy (3.1-3) 
0 ^ J 

When applying statistics to real world problems there 

is often a need to determine the probability distribution of 

the product of two positive independently distributed random 

variables. The following proposition provides the desired 

probability distribution. 

Proposition 3.1.1; 

Suppose the positive independent random variables X and 

y are distributed in accordance with the continuous probability 

distributions f(x) and g(y), respectively. Then the 

distribution of random variable R = X.Y is given by: 

h(r) = 1 - f(x/y)g(y)dy (3.1-4) 
0 y 

Proof ; 

Since x and y are independent, the joint probability 

distribution of x and y is ~ f(x).g(y). Let the 

dummy random variable T be equal to random variable y that is 
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T = y implies X = ^. The joint probability distribution 

of T and R is 

,r, h(t,r) = f{-£) .g(t) . IJ I 

Where the Jacobian J is the 2x2 determinant 

ax 
9R 

ax \  
T 

J = 

3Y 3Y 
3R 3T / 

J = 1 
T 

Therefore, 

f (t,r) = if (^) .f (t) 

Since we are interested in the marginal distribution of 

R, we integrate the joint distribution with respect to t. 

h(r) = 
0 
|f (f) .g(t)dt 

Replacing r = x.y and t = y into the above equation we 

obtain Equation 3.1-4. 

The right hand side of Equation 3.1=4 can be viewed 

as the Mellin convolution of the functions f(x) and g(y). 

Thus, the Mellin transform can be useful in studying the 
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product of random variables. 

3.2. Mellin Transform in Statistics 

Fourier and Laplace transforms have extensively been 

used in statistics as a powerful analytical tool in studying 

the distribution of sums of independent random variables. 

As Epstein (1948) points out the Mellin transform is the 

counterpart of Fourier and Laplace transforms in studying 

the distribution of products and quotients of independent 

random variables. Epstein (1948) also states that like 

the Fourier transform, the Mellin transform has the desirable 

property that there is a one to one correspondence between 

a probability density function and its transform. Epstein 

(1948), Fox (1957), Springer and Thompson (1366, 1970) 

have shown some of the properties of Mellin transform 

in statistics. These properties are stated below. 

Properties of Mellin transform in statistics: 

1. The Mellin transform of a positive random variable 

X with continuous p.d.f. f(x) is: 

F^(x|s) = E[X®"^] 
0 

x  
s-1 f(x)dx Re(s) > 0 

Where E is the expected value operator. 
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2. Scalar factor: 

Let Y = ax 

Where a>0 is a constant and random variable X is as 

in 1, the Mellin transform of y is: 

Fgtyls) = = E[a®"^x®~^] = a®"^ F^Cxjs) Re(s) >0. 

3. Products of n independent random variables. 
n 

Let y = n X. where X. each have p.d.f. f.(x) with 
i=l 

known Mellin transforms F^^(X|s). The Mellin transform of 

y is: 

F(y|s) = E[y®"^] = E[( n X. 
i=l ^ 

= E[X^s-l].E(XgS'l]...E[X^S'l] 

n 
= Tl Ff (x|s) Re(s) > 0. 
i=l ^i 

4. Exponent: 

Let Y = X^, where a is a constant and X is as in 1. 

The Mellin transform of Y is: 

Fg(y|s) = E[Y®"^] = E[X^®"^1 = EEX^^s-a+l)-!] 

= FgfXjas-a+l) Re(s) >0. 

In particular if a = -1, i.e., y = 1/X, then 

Fg(Y|s) = E[Y®"^] = F (̂x!-s+2)= 



www.manaraa.com

48 

5. Quotient of two independent random variables. 

Let y = X^/Xg = (X^) (^) , where X^ and X^ have p.d.f.s 

f^(x) and fgCx), with known Mellin transforms F^(x[s) and 
1 

F (x|s), respectively. The Mellin transform of y is; 
^2 

F(yls) = E[yS"l] = E [ ( (X^^) (jp) ) 

= E[X. = F^^(x(s).F^^(x|2- s )  
-1.s-1 

Re(s) > 0. 

6. Area under p.d.f. 

f (x)'dx = Area •i; X^~^f(x)dx = Fg(X|s) = 1 
s=l 

7. Moments : 

EtX] = X f(x)dx = F-(x|s) = Ff(x|2) 
n ^ «=5 ^ 

Var(X) = Fg(x|3) - [Fg(x|2)]^ 

In general F^(x|s) can be considered as the (s-l)th 

moment of X, Thus the kth moment about zero is given 

by E[X ] = Fg(x|s) 
k+1 
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8. Cumulative distribution function (CDF) 

rX 
Let C(X) = f (t) dt 

where f(t) is the p.d.f. of random variable X. Denote the 

Mellin transform of C(x) by F^(x|s). Then by definition 

we can write 

F^Cxja) = X  
a-1 f(t)dt dx. 

Integrate by parts. Let 

f X  
u = a-1. f(t)dt and dv = x dx. 

Then 

1 ot du = f(x)dx and v = — x . 

Thus, 

F^(x|a) = x" 
X 
f(t)dt] ^ x° f(x)dx. 

Since tne 

lim x" 
x-»0 

f(t)dt] = 0 and for -l<Re(a)<0 

lim[| k" 
X-Hx> ^ 

f(t)dt] = 0 

Note that for -l<Re(a)<0 the function F^(x|s) is analytic, 

Thus the 
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function 

F^(xla) = - i x" f(x)dx. -l<Re (s) <0 

Let 

then 

a = 3-1 

F^(X|B-1) = -
3-1 x^ ^ f(x)dx 

= -gZY Fg(X|3). 0<Re(3)<l 

Note that when 

3-1 = s 

then 
Ff(x|s+1) 

Fc'Xis) = - -^-i 

Similarly it can be shown that 

Ff(X|s+l) 
•c* / V I ^ \ 
"(1-c) 

-KRe (s) <0 

s 
=l<Re(s)<0 

where 

(l-c(x)) = f {t)dt. 
X 

9. Truncated cumulative distribution function 

Let the cumulative distribution function of p.d.f. 

F(x) be c(x) = f(t)dt. Denote the truncated C(X) by 

W(X; U, L) where L and U are the specified lower and upper 

bounds respectively, 0<L<U. That is: 
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W{X; u,L) = 

following form: 

U 
f(X)dx which can be put in the 

W(X; U, L) = C(X) H(x-L) - C(x)H(x-U) where H(X) 

is a unit step function. The Mellin transform of product 

of two functions f(x) and g(x) is given by Carrier et al. 

(1966) as: 

c+ioo 

Fg(X|s- t )  F (X|T)dT. 
2iTi C-loo 

Recalling that the Mellin transform of a unit step function 
a® 

H(x-a) is - —, and invoking the Carrier et al. (1966) result 

we obtain the Mellin transform of W(x; U, L). 

Fw(x; U,L|S) = 2^ 
c+ l™ t t s - t  y s - t  

( s-T )Fc(*l?)dT 
C-ioo 

10. Determination of semi-variance from Mellin transform. 

Markowitz (1959) introduced the notion of semi-variance 

(SV) as an alternative measure of degree of variability and 

skewness of a distribution. In general semi-variance is 

defined as; 

SV = (x=y) f(x)dx ( 3 . 2 - 1 )  

where y is the mean of probability density function f(x) 

Markowitz (1959) proposed that one might use the ratio 
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V â. IT 2gy' as a measure of skewness. For symmetric distributions 

the ratio is one; if a distribution is skewed to the right, 

then the ratio is greater than one; and if the skewness 

is to the left, the ratio will be less than one. (Markowitz 

(19 59) gives the advantages and disadvantages of using 

semi-variance vs. variance in a portfolio selection situa­

tion. ) 

The SV can be written mathematically in the following 

form. By definition 

2 SV = (x-y) f (x) dx 
0 

If we let H(x) and H(x-y) represent two unit step functions 

the SV can be represented as; 

SV = 2 (x-y) f(x)[H(x)-H(x-y)]dx 
0 

which reduces to 

SV = Var(x) - (x-y)(x-y)f(x)dx. (3.2-2) 
0 

Assume the Mellin transform of f(x) is known to be F^(x|s); 

then the Var(x) is: Var(x) = Fg(x|3) - (F^(x|2))^. The 

representation of the integral in Equation 3.2-2 in terms 

of F£(X|S) is a bit more complicated. Carrier et al. 

(1966) give the following property of the Mellin transform; 
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0 

c+x«> 
k{x)g(x)dx = -jIy Fj^(x | s )F  (x|l-s)ds. (3.2-3) 

C-loo 

In view of Equation 3.2-3 let 

k(x) 5 (x-u)(x-u). 

s+n 
Since the Mellin transform of x^ H(x-y) is equal to - ^ »  

the Mellin transform of k(x) can be written as: 

s+2 _3s-2 
W l+I • (3.2-4) 

Using Equation 3.2-3 and 3.2-4 the Equation 3.2-2 can be 

written as; 

SV = Ff(xl3) = (F£(X|2))^ 

1 
2iri 

s+2 „s-l 2(s-l) 3s-2 
. ^ 5+Ï iV-)Pf(x|i-s)as 

C—100 

(3.2-5) 

Note that Equation 3.2-5 gives the SV in terms of the 

Mellin transform of p.d.f. f(x). 

11. Calculating mean and variance of summation of 

independent random variables from their Mellin 

transforms. 

Let Z = X+Y where X and Y are independent random 

variables with probability density functions f(x) and f(y), 

respectively. 
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It can be shown that random variable Z has the p.d.f. 

f (z) = (z-y)fy(y)dy. Therefore, the Mellin transform 

of f(&) can be written as: 

Fg(z|s) = 
00 fOO 
z® f(z)ds = z®"^f^(z-y)fy(y)dydz. 

Evaluation of the right hand side of the above equation 

becomes quite involved. Since we are interested in the 

lower moments of random variable Z, rather than taking 

a direct approach, let us find the moments of random vari­

able Z. This can be accomplished by evaluating the terms of 

the moments of its components as calculated from the com­

ponents' Mellin transforms. From standard probability 

theory we can show that E[z] = E[x] + E[y]. 

E [z] = (x+y)f(x).f(y)dxdy 

r I Xf(x)dK f •L vy ; 
J 0 

dy r 
J yJ 

jr / •- \ J,. r 
J 0 

/ m m  \ J » i. V  ̂

= E[x] + E[y] (3.2-6a) 

If X and y are positive random variables, from property 7 we 

know that 

E[x] = Fg(x|2) and E[y] = Fg(y|2) 
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Replacing the above in Equation 3.2-6a we obtain 

E[z] = Ff[z|2] = Ff(x|2) + Ff(y|2) (3.2-6b) 

Also using standard probability theory we can show that 

E[z^] = E[x^] + E[y2] + 2E[x]E[y]. 

E[z^] 4:f (x+y) f(x)f(y)dxdy 
0  • ' 0  

(x^+y^+2xy)f(x)f(y)dxdy 

X f{x)dx f (y) dy + y f(y)dy f (x) dx 

+ 2 x.y f(x)f(y)dxdy 

= E[x^]+E[y^]+2E[x].E[y]. (3.2-7) 

Because x and y are independent. 

If X and y are positive random variables, from property 7 

we can write 

E[x^] = Fg(x|3); E[y2] = Fg(y|3) 

Elx] = F£(xl2); Ely] = Fg(y|2) 

Substituting the above in Equation 3,2-7 we get. 

E[z^] = Fg(x|3) + F^(y|3) + 2F^ (x ] 2) .F^ (y [ 2) . 

n 
In general, if Z = E X., X.>0 such that X.s are inde-

i=l ^ ^ ^ 
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pendently distributed with probability density functions 

f. (x) and Mellin transforms F- (x|s) then, we can state 
^ i 
the following relationships; 

n 
E[z] = Z Ff (x|2) (3.2-8) 

i=l ^i 

and 
P n n-1 n 

E[z; ] = Z Ff (x|3) +21 E F. (x|2)F. (x|2) j=l,n-2. 
i=l ^i j=l i=j ^i 

(3.2-9) 

The variance of z can be determined using Equations 

3.2-8 and 3.2-9 since 

Var(z) = E[z^] - (E[z])^ 

using the same procedure the higher moments of z can also be 

found in terms of the moments of each component as calcu­

lated from the Mellin transform for each of these components. 

12. Calculating mean and variance of the summation of 

random variables which are perfectly correlated, 

from their Mellin transforms. 

Let Z = X+Y where X and Y are not independent random 

variables and define the probability density functions as 

f(x) and f(y), for X and Y, respectively. 

Then 
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and 

EIZ] = EIX] + E[YJ 

E[Z^] = E[(X+Y)2] 

= E[X^+Y^+2XY] 

= E[X^] + E[Y^] + 2E[XY] 

Var(Z) = E[X^] + E[Y^] + 2E[XY] - E[X]^ - E[Y]^ 

- 2E[X] .E[Y] 

or equivalently 

Var(Z) = Var(X) + Var(Y) + 2Cov(XY). (3.2-10) 

Now assume that X and Y are perfectly (linearly) correlated, 

that is, the correlation coefficient p=l, then we can 

represent Y as a linear function of X, i.e. Y = a+bX where a 

and b are constants. Thus the covariance of X and Y be­

comes : 

COV(XY) = E[XY] - E[X].E[Y] 

= E[X(a+bX)] - E[X].E[a+bX] 

= aE[Xl+bE[X^]-aE[X]-bE[X]^ 

= b(E[X^]-E[X]^) 

= b Var(X) (3.2-11) 

Substituting Equation 3,2-11 into Equation 3=2-10, the 

variance of Z in terms of variance of X is 

Var(Z) = (l+b)2 Var(x) (3.2-12) 
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This can be generalized to a sum of n.m variables: Let X^. 

(i=l,n) represent an independent random variable with p.d.f. 

f^(x). Suppose the random variable (j=l/m> denotes the 

jth variable which is linearly correlated with the ith 

(i=l,n) independent random variable. Such that: = a^ + 

bjX^. Then 

E[yj_ j ]  =  +  b j  .E  [Xj^]  

Var[Y^j] = bj^VarEXj^] 

Define 

m 
Z. = X. + E Y.. i=l,n 

j=l ^ 

and 
n 

Z = E Z. 
i=l ^ 

Since X^'s are independent, the Z^'s will also be inde­

pendent random variables. Then 

m 
E[Z.] = E[X.] + Z E[y. .] 1 1 

m 
= E[X.] + Z (a.+b.E[X.]) 

 ̂ j=l 3 D 1 
m m 

= Z a. + (1 + Z b.)E[X, ] 
j=l ] j=i 3 1 

m m 
VarlZ.] =Var(X.) + Z Var(Y..) + 2Cov(X. . Z Y..). 

1 1 j=i 13 1 j=i 
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m m 
But the Cov(X. . E Y..) = E b. Var(X.). Therefore, 

1 j=l j=l ] 1 

m 2 
Var(Z.) = (1 + E b.)^ Var(X.). 

1 j=l 3 1 

This yields the following results for the mean and 

variance; 

n 
E[Z] = E E[Z. ] 

i=l ^ 

m m n 
= n E a. + (1 + E b.) E E[X.] (3.2-13a) 

j=l J j=l ] i=l ^ 

and 
n m ^ n 

Var(Z) = E Var(Z.) = (1 + E b.) ̂ E Var(X.). 
i=l ^ j=l ] i=l ^ 

(3.2.-14a) 

Hence, if ail X^'s and Y^'s (i=l,n; j=l,m) are positive 

random variables, using property 7 of Mellin transforms we 

can calculate the mean and variance of Z. 

n m m 
E[Z] = E [ E F(a. |2) + (1 + E F(b. |2) )F(X J2) ] 

i=l j=l : j=i 3 1 

(3.2-13b) 

m « n , 
Var{Z) = (1 + E F(b. I 2) ) "= E (F(X.|3)-(F(X.|2))^ 

j=l ^ i=l ^ ^ 

(3.2-14b) 

Appendix B shows the Mellin transform of selected 

probability density functions. 
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4. STOCHASTIC LINEAR PROGRAMMING 

The primary emphasis of this chapter is the development 

of new insights with regard to the complex nature of sto­

chastic linear programming. In particular, we will address 

the models with stochastic profit vector (C), and stochastic 

resource vector (R). Also some decision rules for changing 

the basic vector are discussed. 

4.1. Preliminaries 

Consider the following linear programming problem 

stated as: 

LPl 

max Z = CX 

s.t. AX = r (4.1-1) 

X > 0 (4.1-2) 

V/llwJTw Z 

X is an nxl decision vector 

C is an Inx profit vector 

r is an mxl resource vector 

A is a mxn technological coefficient matrix. 
0 

Following standard linear programming notation, let X^ = 

(X^^,...,X^^) be the &th basis of LPl. Also, let Cg and 

denote the ilth profit vector and basis matrix of LPl, 

respectively. The &th basic solution is said to be feasible 
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if Xg = (B^) 0. Denoting the ijth entry of (B^) ^ by 

S, the &th basic feasible solution can be written as; 

0 ^ 0 
X. = Z X..r. V iem 
1 j=l : 

(4.1-3) 

Substituting the above equation in Equation 4.1-1 we 

obtain: 

(4.1-4) 

Z where Z is the value of the objective function associated 

with the £th basis. If elements of A, C and r are fixed 

known constants, then by the widely used simplex algorithm, 

or some other solution methods, in a finite number of steps 

the optimal solution to LPl can be determined. Now if we 

assume one or all elements of vectors C and/or R are random 

variables, then the deterministic LP solution methods will 

not provide us with sufficient information about the sto­

chastic nature of the problem. The assumption of vectors 

C and/or R being stochastic tends to agree with the be­

havior of most of the real world problems, since the per-

unit profit and availability of resources are a function of 

market economy. Conversely, the elements of matrix A are, 

in general, some measured data, and their variations are 

often due to errors of measurements. The effect of these 

errors on the optimal solution can be determined by the 
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standard LP sensitivity analysis. From theory of LP we know 

that there exists K = (n-m) !— possible bases. Assuming 

that the solution given by the &th basis (ileK) has been 

determined to be, in some sense, an optimal solution, then we 

can consider the following three cases: 

Case I; C is stochastic; r and A are fixed; 

Let the positive random variable be the ith element 

of profit vector C. Assume the C^'s are independently 

distributed and their probability density functions are 

-1 2 known to be f\(C), (i=l,n) . Since (B ) and r are fixed by 
0 

assumption, the Xg is known with probability of one. But 
0  ^ 0 0  

the value of the objective function Z = Ï, C.X. will be 
i=l ^ 

stochastic in nature. At least in theory the distribution 
0 

of Z can be determined. If we are interested in moment 
0 

generating function (M.G.P) of Z , (M .(a)) and its respective 
Z 

moments, then the convolution property of M.G.F. for inde­

pendent random variables can be utilized to obtain the 

expression of M „ (a). 

^ m 

'i-1 , M .(a) = E[e ^ ] = n M- (xfa) (4.1-5) 
Z^ i=l ^i ^ 

where 

M (a) is the M.G.F. of C.. 
'i ^ 

By subsequent differentiations of Equation 4.1-5 and 
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& evaluation at a=0, the moments of Z can be determined. If 

Z we are only interested in the lower moments of Z , an alterna­

tive will be to determine an expression of Mellin transforms 

denoted by Z^(s). Suppose the Mellin transforms of F^(C) 

exist and are represented by F_ (Cjs). Then 
^i 

0 ^ 0 
Z (s) = E F. (c|s) . F(xjls) (4.1-6) 

i=l ^i 

where F(X^|s), (i=l,m) are the Mellin transform of the basic 

variables. By using property 11 of the Mellin transforms the 
0 

first and second moments of Z can be determined. One ad­

vantage of the Mellin transform in calculating the 

moments of a distribution, unlike moment generating func­

tion, is the fact that no differentiation is necessary to 

obtain the moments. This may prove to be advantageous when 

a computer is used to solve a problem of this nature. 

Case II; R is stochastic; C and A are fixed; 

Suppose the positive random variable is the ith 

element of stochastic resource vector R. Let R^'s be 

independently distributed with known probability density 

function g.(r); (i=l,m). In view of Equations 4.1-3 and 
0 0 

4.1-4, it is apparent that Xj^ and Z both are random 

£ a —1 a variables, and dual variables Y = C (B ) are constants. 

Again by invoking the convolution property of moment 

generating function (M.G.F.), the moment generating function 

of X^^, (M ^ (a) ) and Z^, (M ^ (a)) can be written as follows: 
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M , (a) = E[e J ] = n M- (Xt.a) (4.1-7) 
j=l 

^  ' ^ 0 0 0  
E £ Xi.CiR. „ 

M .(a) = E[e^ 3 ] = n Mp ( E X^T.C^a) (4.1-8) 
TT j = l i=l ^ 

where 

M„ (a) is the M.G.F. of R., and 
Rj J 

0 ^ 0 0 
Y. = Z X. .C. is the shadow price of R. , 
D ID 1 J 

0 0 
from which the moments of X- and Z can be calculated. 

Assuming the Mellin transforms of g.(r) are known, then 

2 0 transform expressions for X^ and Z can be written as: 

n g 

xf (s) = Z F(X.Js) . (R|s) (4.1-9) 
^ j=l ^i 

Z (S) = E F(yns) . (R|s) (4.1-10) j_i 1 g. 

where 
i=l ^ ^i 

2 X^(s) is the Mellin transform expression associated 

with X^ 
jj, 

Z (s) is the Mellin transform expression associated 

with 

F (R|s) is the Mellin transform of g.(r) 
9i 1 
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F(yf|S) is the Mellin transform of 

The discussion about the advantage of the Mellin transform 

made in Case I also applies to this case. 

Case III; C and R are stochastic; A is fixed; Let C^ and 

be defined as in cases I and II respectively, with the 

assumption that C^ and R^ are independently distributed. 
0 0 

The decision variables and Z are both random variables, 
0 

and the moments of X^ can be calculated from either Equation 
0 

4.1-7 or 4.1-9. The random variable Z is defined by: 

0 ^ ^ 0 2 & 
Z^ = Z E X..C.R. (4.1-11) 

i=l j=l ^ ] 

z z where C^ and R^ are both random variables. unlike Cases l 

and II the moment generating function of Z can not be found, 

unless we know the distribution of Z^. On the other hand for 

an important special case, using properties of the Mellin 
0 

transform the lower moments of Z can be found. Assume Rj^ 

and Cj (i=l,m; j=l,n) are independently distributed random 

variables such that C^ = ^ + a^^^ÇandR^ = 6q̂  + 

(where ^ j , gg, and are constants) , and further 

assume the p.d.f. of Ç is known to be h(Ç), Ç>0^ Under these 

assumptions the value of the objective function Z^ is a func­

tion of the random variable Ç and is denoted by; 
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= Kq + (4.1-12) 

where Kq, and are constant. By using properties of the 

0 
Mellin transform (see Chapter 3) the mean and variance of Z 

can be determined. So far in this section we have assumed 
0 

that X has been known to be, in some sense, an optimal solu­

tion. In the next section an attempt will be made to give 

some insight into the difficulty of selecting an optimal 

basis. 

4.2. Optimality and Feasibility Conditions of SLP 

In the classical linear programming problem, a solution 

is optimal (maximal) when Cj=Cj-CgB ^a^^O; (j|Xj is nonbasic) 

and it is feasible if X_ = B ^r > 0. A feasible optimal solu-a — 

tion is obtained when both of these conditions are satisfied. 

But due to the random nature of vectors C and R, at each 

optimal basis the linear program will have a probability of 

0 0 

being feasible (P^), and one of being optimal (P^). Since by 

assumption C and R are independent random vectors the prob­

ability of the £th basis being a feasible optimal solution 
0 0 0 0 

is Pg = Pg • P^. Where the expressions for determining Pg 

and P are given below: 
o 
0 m 0 m j-1 

Pç = P{ 11 X. > 0}=P{X ̂ 0} n P{X.>0|O X. >0} (4.2-1) 
^ i=l ^ i=2 J i=l ^ 
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= P{ A C.<0} 
° j =m+l ^ 

(4.2-2) 

The distribution of the objective value under these 

conditions can be stated as: 

Equation 4.2-3 implies that to determine distribution of the 

objective function, one must determine all K possible bases 

along with their respective probability of feasibility and 

optimality. However, in practice, the above proposition 

requires a tremendous amount of time and some difficult 

computational efforts. As an illustrative example for the 

amount of work involved, let us consider the following very 

simple example. 

Z(C,R) = E P^.Z^(C,R) 
&=1 ^ 

(4.2-3) 

where 

K n! 
m!(n-m)! 
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Example 4-1: 

Max Z = 2X^ + Xg 

s.t. %! + *2 * *3 ̂  *1 

3X^ + Xg + X^ = Rg 

Xi, Xg, X3, X^ > 0 

Where and R^ are independent random variables with the 

uniform probability density functions; R^^U (2^6) , R^^x^U (3,9) . 

The K=6 possible bases are functions of R^ and Rg and are 

shown in Table 4-1. Figure 4-1 gives the graphical repre­

sentation of Example 4-1. The probability that the ^th (2.<K) 

base is an optimal solution can be determined by using 

Equation 4.2-2, and since profit vector (C) is not a random 
0 

vector, P is zero or one. Since the bases are functions of 
o 

R^ and R2, their respective probabilities of being feasible 

are also functions of and R^. As a representative calcu­

lation let us find the probability that the first set of 

solution is feasible (P^), and is optimal (P^). 

Pg = P{Xi>0}.P{X2>p|X^>0} 

P{X^>0} = P{(-R^+Rg)>0} 

P{X2>.0 iX^^O} = P{ (3R^-'R2) >0! 
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Table 4-1. Possible basis of Example 4-1 

z h ^2  ^3  *4  

1 i ( - r l+r2>  § (3r^-r2 )  1̂ 1 + 1^2 

2 
3^2 *1 - & *2 1^2 

3 
^1  -3* l+*2  

j 1 1 

«r
*
 cm 

4 
^2  ^l"^2 r2  

5 
^1  -*l+*2 ^1  

6 
*1  ^2  

0  



www.manaraa.com

71 

Referring to Figure 4-2: 

• 6  

P{X^>0} = 1-^ 
R, 

dRidR2 - 1-24 (G-RgjdRg 

- l-i[6R2-|R2^] I3 - H 

P{X2>0|X^>0} = § - ̂  3^2 3 
2 dR^dRg = $ 

Therefore the probability of the first basis being feasible 

IS: 

= H • I = If = 0-60"75 

In order to determine P^, we have to calculate and 

C3 = 0-(2 1) 
^-1/2 1/2^ 

= 0-(2 1) 

P{C^<0} = 1 

PfC^lOlCjiO) = 1 

3/2 -l/^J\o] 

f-'" "in--"' I O /O _T /O il 1 I 

Thus the probability that the first set is optimal is equal 

to one. Now the probability that is feasible and optimal 

is 

pè = Pf.P^ = 0.609375 
Z r o 
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0  I  2 3 4 5 6 7 8 9  1 0  R 

Figure 4-2. Feasible region of 
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The probabilities associated with the other sets can be 

determined in the same manner. Table 4-2 shows the results 

for Example 4-1. 

Thus in most practical situations, one might wish to 

sacrifice some exactness of the results for savings in compu­

tation time and ease of calculations. This implies that rather 

than checking all possible basis, we select one according to 

some predetermined decision rules. The idea of using simplex 

algorithm with a modified decision rule for changing the 

basis seems appealing. Some decision rules are as follows: 

a) use mean, b) use mode; c) use mean minus some constant 

multiplied by the standard deviation the constant could be a 

measure of risk aversion of the decision-maker, d) use mean 

minus semivariance (SV is defined in Chapter 3). These 

proposed rules are subject to further study and their appli­

cabilities for particular situations need to be considered. 

4.3. Balanced Stochastic Linear Program 

Again, recall that the optimal feasible solution vector 
— 1 m 

to a LP problem is X* = B R. X* is a vector in the space R 

and as long as the slope of this vector is insensitive to 

the variations of the vectors R, C, and the matrix A indi­

vidually, then the composition of the optimum basis will 

remain the same. In view of the above discussion, let us 

define a special class of stochastic linear programs. 
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Table 4-2. The results of Example 4-1 with the RHS of; R^^U(2,6); 

& Basis 

Probability that Probability that 
the basis is the basis is 
feasible optimal 

Value of Prob. that the 
the objective basis is feasible 

function optimal 

1 0.609375 1.0 i(Ri+*2) .609375 

2 Xi&X, 0.9375 0 . 0  
1̂ 2 

0 . 0  

3 Xi&X* 0.0625 1.0 2R, 0.0625 

4 Xg&Xg 

5 X2&X4 

6 X2&X4 

0.1875 

0.8125 

1.0 

1.0 

0 . 0  

0 . 0  

R, 

R, 

0.1875 

0 . 0  

0 . 0  
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Definition 4.3.1; A stochastic linear program is called 

P-balanced when the elements of profit vector C are identical­

ly distributed to within linear transformations. 

Definition 4.3.2; A stochastic linear program is called 

R-balanced when the elements of resource vector R are 

identically distributed to within linear transformations. 

Definition 4.3.3; A stochastic linear program is called 

T-balanced when the entries of the technological matrix A 

are identically distributed to within linear transformations. 

Definition 4.3.4: A stochastic linear program is called PRT-

balanced if each of the definitions 4.3.1, 4.3.2, and 4.3.3 

hold. 

The following results reveal some of the properties of 

the balanced stochastic linear programs assuming an optimal 

solution exists. In particular, the following lemmas are 

proven for a special class of balanced SLP where the elements 

of vectors C, R, and matrix A are dependent random variables 

within their respective vector or matrix. Thus, we call 

this special class of balanced SLP "dependent balanced" 

stochastic linear program. 
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Lemma 4.3.1; For a given SLP, if the elements of random 

profit vector C are given by C. = C_ (1+C(a)); (i=l,n) and 
X 

vector R and matrix A are constants where: 

CT is the lower bound of random variable C.. 
Li 1 

a = 
C(a) 

f(C)dc; 0<a<l, 

Then the composition of the optimal basis X* is insensitive 

to the random variation of vector C. 

Proof: 

Since r and A are constants, X* will be unchanged as 

long as the slope of the hyperplane Z* = C^X* remains un­

changed for the random variations of Cg. To show that the 

slope of Z* does not change it is sufficient to show 

that the unit vector of vector Cg stays the same. The unit 

vector of is defined as = C^/||Cg|], where | jCgJ | 

is the norm of C„,or = ( i i i , -rrT^-TTr •••r TTTrVr) 'B' CB B' 'B 'B 

for a=0, that is Cg constant 

^CB / • • • f 
'B 'B 

where 

m 

'B 

n g n o i / o 
^ 1 1  =  

12 m 

For 0<a<l 
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C. = (1+C(a) ) 
1 Li 

I ICgl 1 = (1+C(an I leg I I 

Lemma 4.3.2; For a given SLP, if the elements of random 

resource vector R are given by R. = R, (1+R($)), and vector 1 

C and matrix A are constants where : 

RT is the lower bound of random variable R-
Li 1 

e = 
R(3) 

f(r)dr, 0£3£l 
0 

Then the composition of the optimal basis X* is insensitive o 
to the random variations of R. 

Proof: Since C and A are constants, the composition of X* 

will remain unchanged as long as the slope of X* does not 

change upon variation of random vector R. Again, we have 

to show that unit vector of X* is insensitive to R(&), and 

the rest of the proof is similar to Lemma 4.3.1. 

Lemma 4.3.3; For a given SLP, if the entries of the random 

technological matrix A are given by a. . = (l+ACy)) and 

vectors C and R are constants where; 
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a_ is the lower bound of random variable a.. 
Lij ID 

Y = 
a(Y) 

f(a)da, 0<Yllf 
0 

Then the composition of the optimal basis X* is insensitive 

to the random variations of A. 

Proof: For C and r being fixed the composition of X* stays 

the same as long as the unit vector of X* is unchanged for 
-1 

any variations of random matrix A. For y = 0 ,  X* = r and 

for 0<y<l X* = (l+a(Y))BL^r and as in Lemma 4.3.1 it can 

easily be shown that Uy* = U^*. 
B *B 

Theorem 4.3.1: Given a SLP if 

Ci = Cl (1+C(a)) 

R. = R_ (1+R(e) ) 
1 

a.. = a_ (l+avy)) 
ID 

fC(a) 
a = f(c)dc, 0<a<l 

•' 0 

6 = 

Y = 

R ( 6 )  
f(r)dr, 0£3£1 

a(Y) 
f(a)da, 0£Y£1 

0 

Then the composition of the optimal basis X* is insensitive 

to the random variations of C, R, and A. 
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The proof follows from Lemmas 4.3.1, 4.3.2, and 4.3.3. 

The significance of balanced stochastic linear program lies 

in the fact that the efficient simplex algorithm can be 

utilized to identify the optimal basis. This is achieved by 

replacing the random variables by their equal percentile 

(e.g., mean, lower bound, upper bound) and solving the problem 

as a deterministic LP problem. Upon the identification of 

the optimal basis, the statistical properties of the optimal 

value can be determined. As mentioned in section 4.2 a solu­

tion of a stochastic linear program has associated with it 

a probability of being feasible and optimal. It is our con­

jecture that balanced stochastic linear programs, when solved, 

will yield the optimum basis with the highest probability of 

being feasible and optimal. This conjecture needs to be 

proven mathematically; however, the results of Example 4-1 

(which can be considered as a dependent R-balanced model 

with = 2(1+R(3)); Rg = 3(1+R(3)), and R'X'U(0,2) supports our 

surmise for the special class of dependent balanced SLP. 

From Figure 4-1 it can be observed that point A (the optimal 

basis for 3=0) and point B (the optimal basis for 3=1) lie 

on a straight line which goes through the origin, thus a 

vector. The elements of this optimum basis vector are 

and , and under the assumption of independence of R^ and 

R2f Table 4-2 shows that the optimum basis vector (X^, Xg) 
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has the highest probability of being feasible and optimal. 

Appendix A shows the probability of possible bases of 

Example 4-1 for different ranges of and which again 

supports our conjecture. 
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5. APPLICATION OF THE MELLIN TRANSFORM 

IN STOCHASTIC LINEAR PROGRAMMING 

The application of the simplex algorithm to a linear 

programming problem requires the multiplication and division 

of real fixed numbers. However, if these real numbers are 

subject to random variations the applicability of the 

standard simplex algorithm becomes questionable. In Chapter 

3 we demonstrated that the Mellin transform is a powerful 

tool in studying the products and quotients of positive 

independent random variables. Therefore, it is natural to 

observe that the Mellin transform could be used in conjunction 

with the simplex algorithm to solve certain classes of sto­

chastic linear programs. In this chapter we attempt to link 

the ideas presented in Chapters 2, 3, and 4, and hopefully 

present another view of solving certain classes of stochastic 

linear programs. 

Consider the following stochastic linear programming 

problem; 

5.1. The Mellin Transform and the 
Simplex Algorithm 

m 
max Z = Z C.X. (5.1-1) 

n 
s.t. E a.^Xj = R^, (i = l,m) (5.1-2) 
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Assume Cj, and a^^ (i = l,m; j = l,n) are positive inde­

pendent random variables with probability density functions 

fj(c), f^(r), and f^^(a), (i = l,m; j = l,n), respectively. 

Assuming the Mellin transforms of f^(c) , f\(r), and f^^(a) 

exist, the Equations 5.1-1 and 5.1-2 can be written as: 

n 
max Z(s) = E F- (C|s) . X.(s) (5.1-3) 

j=i : 

n 
s.t. E Ff (als) . X.(s) = F, (r|s), (i = l,m) 

i=l ^ij ] ^i 
(5.1-4) 

where : 

F-r (c|s) is the Mellin transform of f. (c) . 
i 

F- (a|s) is the Mellin transform of f..(a). 
ij 

Xj(s) is an expression of the Mellin transform of the 

probability density function of ijth element of 

matrix B and the Mellin transform of probability 

density function of R^, (i = l,m; j = l,m). 

Z(s) is the summation of the product of F_ (C|s) and 
j 

Xj(s), (j = l,m). 

It should be noted that Xj(s) and Z(s) may not be the Mellin 

transforms of the distributions of decision variable X^ and 

objective value Z. The reason is the fact that the Mellin 

transform of the probability density function of sums of 

random variables is not equal to the sum of the Mellin 

transform of distribution of each random variable. This 

fact is shown by property 11 of the Mellin transform (see 
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Chapter 3). Equation 3.2-8, of Chapter 3, indicates that 

E[Z] and E[Xj] can directly be calculated from Z(s) and Xj(s) 

simply by evaluating the expression at s=2. From Equations 

3.2-8 and 3.2-9 it is evident that evaluating Z(s) or X^(s) 

at s=3 obtains a value bounded from above by the second 

moment of Z or X^, and from below by the variance of Z or Xj, 

respectively. 

The linear program defined by Equations 5.1-3 and 5.1-4 

can be viewed as a "wait-and-see" type of stochastic linear 

programming problem, since for a value of s>l an observation 

of random set (A,R,C) is made. In particular, if we assume 

that the above linear program is a "balanced" stochastic linear 

program, then the convexity of the objective function and the 

feasible region for an observation of random set (A, R, c) 

is assured. 

In order to apply the simplex algorithm to the linear 

program defined by Equations 5.1-3 and 5.1-4 (from now on 

referred to as Mellin simplex algorithm), we need to restate 

the minimum ratio rule in the context of the Mellin trans­

form. The minimum ratio rule for Mellin simplex algorithm 

can be stated as follows: 

Ri(s) I 
minimum { ; P., (s)| >0} (5.1-5) 
l^i^m P...(s)j s > 1 

s>l 
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where : 

R^(s) is the current Mellin transform expression of the 

right hand side. (Note, R^(s) is not necessarily 

the Mellin transform of the distribution of the 

RHS). 

P^^Xs) is the current Mellin transform expression of 

the ith element under the entering variable Xj^. 

(Note, P^^(s) is not necessarily the Mellin 

transform of the distribution of the ikth 

element). 

Let us demonstrate the Mellin simplex algorithm by solving 

Example 5-1, which can be viewed as an independent R-

balanced stochastic linear program. 

Example 5-1; 

MAX Z = 2X^ + XG 

s.t. X^ + X2 + X^ = R^ 

3X^ + Xg + X^ = Rg 

XI, XJ, X3, X^ > 0 

where : 
f-S -s 

RL%U(2,6); F(R^|S) = 

QS_-S 
R2~U(3,9); FfRgIs) = 

Transforming the above problem to the form of Equations 5.1-3 
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and 5.1-4 we obtain; 

,s-l max Z(s) = 2 . X^(s) +X2(s) 

s.t. Xt (s) + X_(s) + X-(s) = 6^-2^ 4s 

s-1 9^-3^ 3® . X^(s) + Xgts) + X^(s) = gg 

X^(s) > 0 i — lf2,3,4 * 
s>l 

Representing in tableau form we have ; 

Tableau 1: 

X^(s) 

Xgts) 1 
s-1 

X^Cs) 3 s-1 

C-row 2 s-1 

XgtS) XgfS) X^CS) 

s-1 

s-1 

s-1 

RHS 

4s 

9S-3S 
6s 

0 

Use s=2 (mean) as a decision rule to change the basis. 

Then in Tableau 1 X^(s) is a candidate to enter the basis 

The leaving variable is determined by Equation 5.1-5 

6^-2® 

Minimum {• 
4s 

9S-3S 

s=2 6s 

s-1 .s-1 -} = minimum {4;2} 

s=2 
s=2 
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Thus X^(s) is a candidate to leave the basis. Multiplying 

2_—S the second row by 3 and performing the necessary row 

operations obtains the second tableau. 

Tableau 2 : 

X^(s) Xgfs) XgCs) X^(s) RHS 

Xgts) 0 1-3I-S 1 -3I-S ^^i|--• 3^"® 

X^(s) 1 3^"® 0 3^"® 

C-row 0 l-2®"\3^"® 0 -2®"\3^~® -2^"^.^^^^ . 3^"^ 

The coefficient of X^Cs) in C-row evaluated at s=2 is 

positive, thus Xgfs) is the candidate to enter the basis. 

The leaving variable is determined by the minimum of the 

following ratios: 

râîzsf. . 9S.3S 
4s 6s 's=2 = 3 
(I-3I ®) 

s=2 
and 

= 6 
(3^"^) 

s=2 
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Therefore, X^fs) will leave the basis. Following row opera­

tions Tableau 3 is obtained. 

Tableau 3 ; 

X^(s) Xgfs) Xgts) X^(s) 

-3I-S 

*2'=' " 1-3I-S 1-3I-S 

_l-s ol-s 

'l'"' ^ ° "Iipri ^ 

C-row 0 0 
1-3^"® 1-3^"® 

Tableau 3 (Continued); 

RHS 

1-s 

Xo(s) 
R1-R2.3 

^ I-3I ® 

3l"S(R _R ) 

C-row 
I-3I-S 

Where 
cS gS -s 

^1 = —4i- ^2 = -ii-
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Since the elements of C-row in Tableau 3 are all nonpositive, 

we have reached an optimal solution. The optimal value of 

X2 f and negative of Z are shown in the RHS column of 

Tableau 3. It should be noted that since the above example 

is a balanced stochastic linear program the choice of s 

will not change the composition of the optimum basis. 

Perhaps the only situation that one might be willing 

to use the Mellin simplex algorithm is the case when each 

element of random set (A, R, c) is : 

a) some power of a known random variable; 

b) a quotient of known random variables; 

c) a product of some known random variables. 

For example, if the profit coefficient of decision variable 

is (a is real) where the p.d.f. of is known to be 

f^(C), then by using property 4 of the Mellin transform, 

in Equation 5.1-3 (C1s) becomes Fg (cjas-a+l). Dis­

regarding the above situations, the computational effort 

needed to solve a given problem by the Mellin simplex algo­

rithm does not justify its usage. 

5.2. SFG Solution of Stochastic 
Linear Program 

In Chapter 2 we showed how a deterministic linear pro­

gram can be solved using signal flow graph (SFG) procedures. 

In this section the method developed in Chapter 2 is 
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utilized in conjunction with the idea discussed in Section 

5.1 to give another view of solving certain class of sto­

chastic linear programs. 

Consider the linear program of Equations 5.1-3 and 5.1-4 

stated below 

n 
max Z{s) = Z Ff (c|s) . X.(s) (5.2-1) 

3=1 3 

s. t. n 
E (a|s) . X.(s) = F^ (RIS); (i = l,m) 

j=l ^ij ] ^i 
(5.2-2) 

Putting the above SLP model in SFG standard form, that 

is determining the dependent (basic) variables, and assuming 

random variables a^^ do not consist of addition or sub­

traction of random variables we obtain. 

n 
max Z(s) = E F (C|s)X.(s) (5.2-3) 

j=l 3 

n 
s.t. X, (s) =FV (aj-s+2) [ Z F- (aj s) .X. (s)+F. (Rjs)]; 

^ ^ii j=l ^ij ^ ^i 

(i = l,m) (5.2-4) 

Assuming the decision rule to change the basis has been 

specified, then by using the method discussed in Section 

2=4 the optimum solution to the above model can be deter­

mined. The solution procedure is demonstrated by solving 

Example 4-1= 
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Example 5-2 ; 

max Z(s) = 2®"^ . (s) + Xgfs) 

s.t. X^(s) + Xgts) + Xgfs) = 

3®~^Xj^(s) + Xgtx) + X^(S) = Rg 

Xi(s) >0 i — 1,2,3,4 
s>l 

where 

"2 = Tî  

Selecting X^fs) and X^(s) as the dependent variable we 

obtain 

max Z(s) = 2®"^ . X^fs) + Xgfs) 

s.t. Xgts) = -X^(s) - Xgfs) + R^ 

X^ (s) = -3^"® . Xgts) - 3^"® . X^Cs) + 3^"®R2 

Using the graphical symbols of Table 2-1, the SFG representa­

tion of the above model is shown in Figure 5-1. 

X^(s) = •*" (^R2+X^)*2 ^ *2 

X2(s) = (?& +x )*1 ^ 
1 2 z z 
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J-s 

X, (s) 

Z (,y 

Figure 5-1. SFG representation of Stage 1 of Example 5-2 
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2(3) = %̂ z'«l + «R2̂ Z"'2 = Ŝ 'S.zS-lR̂  

Determination of entering and leaving variables : assume 

our decision rule is based on s=2 (mean). 

T 
X4^Z 

-1-s _s-l -3 .2 
s=2 S=2 

2 
•3 

X2+Z 
= 1-3^"®.2®"^ 

s=2 

Since the maximum [T^ 

enter the basis. 

•J, Xg is a candidate to 

T 
X2-X1 

= -3 1-s 

s=2 

1 
•3 

s=2 

X. (s) I — 3 
I s=2 

1-s 9S-3S 
6s 

= 2 

s=z 

*1 = -I = -6 

Xg-^X^ 
= -1 + 3 1-s 

s=2 s=2 
•_2 
3 

X3 (s) 
s=2 

= (6S-2S _,l-s 9S-3S 
^ 4s " • 6s ' 

= 2 

s=2 

*3 = -2 = -3 
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Note that: 

Maximum [R^, R^l = -3, thus is a candidate to 

leave the basis. 

Stage 2 ; 

max Z{s) = 2® ^ . X^(s) + Xgfs) 

s.t. Xgfs) = -X^(s) - Xgfs) + 

X^(s) = -3^"^ . Xgfs) - 3^"® . X^(s) + 3^"®R2 

X,(s) X,(8) 
— S 

Figure 5-2. SFG representation of Stage 2 of Example 5-2 
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-3^~®R,+3^~®Rp 
Xl(s) = (TRi+X^)*! + 

Rj^-3^-=R2 

XjCs) 1-3^"® 

XsCs) (Tp̂ âg)*! •*• '''rj-I-XJ'®2 ° 

X,(s) = (TR^^x^lRi + (Tr^,x^)R2 = 0 

2(3) = + (TR̂ .Z'*, 

(1-3^"®. 2®"^) Rj^ + (3^"®.2®"^-3®"'-)R2 

I-3I-S 

Since 
s-2 "2' •'x̂ -.Z 

= -%- are both nonposi-
s=2 

tive the current solution, given our decision criterion 

(s=2), is optimal. Using property 11 of the Mellin trans­

form the mean and variance of the optimal values can be 

determined. 

The situation that the random variables a^j, C^, and/or 

Rj^ (i = l,m; j = l,n) follow a discrete distribution can be 

handled with a small modification in the SFG representation. 

For example, suppose R^ and R^ of Example 5-1 follow the 

following distributions ; 
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R. 1 

R| with probability p^ 

^ with probability 1-p^ 

and 

R 
2 

Rg with probability p^ 

Rg with probability l-pg 

where R^, R^, R^, and R^ are some known Mellin transforms, 

p^ and p^ are constants [0,1]. Then the final SFG of Example 

5-1 shown in Figure 5-2 can be redrawn as Figure 5-3-

Depending on the R|, R^, R^/ R^f and the decision rule 

used. Figure 5-3 may not be the optimum SFG. Suppose for the 

sake of argument that Figure 5-3 represents an optimal SFG, 

then the Mellin transform expressions of the optimal solu­

tions are; 

(s) -
3^ =[p2R^+(l-P2)R%]-3" S[piRi+(l-Pi)R%] 

Xgts) 

1-3^"® 

[p^Rj^+(1-p^) R'^1-3^"® [P2R^+(I-P2) R';^] 

Xgfs) = 0 

X4 (S) = 0 

Z (S) = 

(1-3^"®.2®"^)[p^Rj+(l-p^)R£] 

+ (3^"®.2®"^-3®~^)[pgR^+tl-PglR^] 
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- s  

r3 

- s  
-3 

s -

X, (s) 

(i-Zz) • 3''" 

Figure 5-3. SFG representation of Stage 2 of Example 5-2 
with discrete random resources 
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5.3. Postoptimality Analysis and 

Solution Methods Evaluation 

Postoptimality analysis in a stochastic environment by 

SFG, assuming the decision rule is specified, is similar to 

the deterministic case with some minor modifications. For 

example, to determine the variations of profit coefficient 

c., in the final SFG we simply replace F- (c|s) by 
] j 
F_p (c|s) + A.® ^ and proceed in a manner similar to the 

Section 2.5.1 for some s>l. For finding the range of r^ or 

a.. we replace F_ (rjs) by F_ (r|s) + A.® ^ or F^ (a|s) by 
ID ^ 
F, (a I s) + A. . and follow the procedure of Section 2.5 
tij ID 
for some s>l. 

In this chapter we presented different views of solution 

methods of a certain class of stochastic linear programs. 

The practicality of these procedures are questionable, with 

the exception of situations mentioned at the end of Section 

5.1. For a small problem, suitable to the procedures 

explained in this chapter, it appears that the SFG method 

may be easier computationally than the Mellin simplex 

algorithm. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

A procedure to determine the inverse of a matrix based 

on the concept of signal flow graph has been presented. It 

has been mentioned that this procedure can be an attractive 

method in the situations where the matrix has a high degree of 

sparsity. A formal treatment of solving the standard LP 

problem using the Signal Flow Graph procedure in conjunction 

with the simplex algorithm has been presented. No compu­

tational efficiency is noted for this procedure except in the 

situation where the technological matrix is highly sparse. 

Chapter 3 presented a formal discussion of applications of 

the Mellin transform in statistics. Some extensions of 

the preseftt application are offered. In particular; a) 

the Mellin transform of the cumulative distribution was 

derived, b) the theoretical approach of finding the Mellin 

transform of a truncated cumulative distribution was 

discussed, c) the idea of semi-variance in continuous form 

was stated, and a theoretical way of determining the semi-

variance from the Mellin transform of the probability 

density function was discussed, d) a way of calculating 

mean and variance of summation of independent, and also 

perfectly correlated random variables from their Mellin 

transforms was presented. 

In Chapter 4 some of the complexities of determining the 
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distribution of the optimal solution for the models with 

stochastic profit and resource vectors were discussed. While 

Section 4.2 gives an optimality and feasibility condition 

for certain stochastic linear programming models. In 

order to determine the distribution of the optimal solu­

tion one must calculate the probability of feasibility and 

optimality of all possible bases, albeit impractical for 

most real world problems. Also, a new class of sto­

chastic linear programming problem, called balanced SLP, was 

introduced. This class of SLP has the interesting property 

that the efficient simplex algorithm may be used to determine 

the composition of the optimum basis. This is achieved by 

replacing the random variables with an equal percentile 

observation (such as mean) of the random variable, and to 

solve the deterministic LP problem. 

In Chapter 5 it was shown how Mellin transform can be 

used in a simplex tableau form or with SFG to solve certain 

classes of stochastic linear programs. It has been noted 

that the computational effort needed to solve a given SLP 

by the methods of Chapter 5 does not justify its usage. 

Perhaps the most important area which needs further research 

is the determination of a (or some) practical decision rule(s) 

for changing the basis and its related optimality criterion 

for different classes of stochastic linear programming models. 
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9. APPENDIX A: PROBABILITIES OF POSSIBLE BASES OF 

EXAMPLE 4-1 FOR DIFFERENT RANGES OF R^ AND R^ 
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Table 9.1. The results of Example 4-1 with the RHS of: R^%U(0,2); 

Prob. that 
Basis the basis is 

feasible 

Prob. that Value of 
the basis is the objective 

optimal function 

Prob. that the 
basis is 

feasible optimal 

1 
^1 

& 
"2 

0.125 1.0 #(*1 + 

2 
^1 

& 0.125 

o
 

o
 2/3 Rg 

3 
^1 

& 0.875 1.0 2R^ 

4 X2 & 

o
 

o
 1.0 R2 

5 X2 & *4 
1.0 

o
 

o
 «1 

6 ^3 & *4 
1.0 o
 

o
 

0 

0.125 

0 . 0  

0.875 

0 . 0  

0 . 0  

0 . 0  
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Table 9.2. The results of Example 4-1 with the RHS of: R^'vu(3,9); Rg^Ufl,]) 

z Basis 
Prob. that 
the basis is 

feasible 

Prob. that 
the basis is 

optimal 

Value of 
the objective 

function 

Prob. that the 
basis is 

feasible optimal 

1 ^1 & 
==2 0.0 1.0 §(*1 + «2' 0.0 

2 
^1 

& X3 1.0 0.0 2/3 Rg 0.0 

3 & 0.0 1.0 2Ri 0.0 

4 & X3 1.0 1.0 R2 1.0 

5 X2 & ^4 0.0 0.0 
*1 

0.0 

6 
^3 

& ==4 1.0 0.0 0 0.0 

/ 
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Table 9.3. The results of Example 4-1 with the RHS of: R^^U(0,10); 8^^0(0,2) 

£ Basis 
ProL. that 

the basis is 
feasible 

Prob. that 
the basis is 

optimal 

Value of 
the objective 

function 

Prob. that the 
basis is 

feasible optimal 

1 & Xg 0.00667 1.0 h^i + ^2) 0.00667 

2 & X3 0.96667 0.0 2/3 Ej 0 

3 & X4 0.03333 1.0 2R^ 0.03333 

4 & X3 0.9 1.0 R2 0.9 

5 
^2 

& X4 0.1 0.0 
*1 

0.0 

6 & %4 1.0 0.0 0 0.0 
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APPENDIX B: MELLIN TRANSFORMS FOR SELECTED 

PROBABILITY DENSITY FUNCTIONS 
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Table 10.1. Mellin transforms for selected p.d.f.s. 

p.d.f., f(x) Ff(x|s) 

a, constant 

1 
b-a' —• 

e x>0 

a<x<b 

aS-l 

b°-a° 
S(b-a) 

r(s) 

ae x>0 (|)®"^r (s) 

(1-x) 

, a -X 0<x<<» 
X e 
r(a+l)' a>-l 

r (g+g) a-1 
r ( a ) r ( 6 )  
0<x<l; a>0; g>0 

—y X a>0 
a 

3-1 

2(x-a) 
(c-a)(b-a) -, 0<a<x<b 

v(e-a?(c-b) c-a 

r(a+s) 
r (a+l) 

r(a+e)r(a+s-i) 
r(a+3+s-l)r(a) 

2 a^+l 

2 s+1 

2ab+2bc-4ac 
- + 

2(bS+l-aS+l, 

(b-a)(c-a) (c-b/ (b-a) (c-a) (s+1) 

2(cS+l-bG+l) 

(c-s)(c-b)(s+1) 

ïï(l+X ) 
—°°<x<°° Cosec(^) 

1 — Y 
Y e ' ' -oo<x<oo i-(-i) r (s) 
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11. APPENDIX C: SIGNAL FLOW GRAPHS 

A flow graph is a topological portrayal of a system of 

linear algebraic equations. S. J. Mason (1953, 1956) recog­

nized the mathematical structure of the flowgraphs and formu­

lated precise rules for the graphical manipulation of a set of 

linear algebraic equations. Since the original applications 

of these concepts by Mason (1953) were in the area of elec­

tronics, he coined the name "signal flowgraphs" (SFG). As 

the name implies, SFG depicts the flow of signals from one 

point of the system to another. Irrespective of the 

original content many systems can be modeled as a set of 

linear algebraic equations to which the methodology of SFG 

can directly be applied, 

11.1. Basic Concepts and Terminology 

Suppose a linear system can be described mathematically 

by the following set of linear algebraic equations. 

n 

j=i ] 
Z ai X + b. = y. i = 1 y » # #ni 

where 

y^ = dependent variable 

b^ = resource or initial condition 
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11.1.1. Terminology 

a) Dependent or independent variables are depicted 

by circles called nodes. 

b) When relationships exist between nodes, then 

branches are used to represent such relation­

ships . 

A branch has the following properties; 

i) It is a directed line joining two nodes. 

ii) It has a magnitude called transmittance or branch-

gain which is determined by the relationship 

between two nodes (a_j). 

iii) It has a direction which is indicated by an arrow 

from independent to dependent variable. 

c) When no branches emanate from a node, this node is 

called a sink node. 

d) When no branches have their arrow pointing toward a 

particular node, this node is called a source node. 

e) A chain node is a node which has only one incoming 

as well as one emanating branch. 

f) A loop is a collection of branches which are con­

nected only by chain nodes (i.e., the source and 

the sink nodes are the same). 

g) A self-loop is a loop which contains only a single 

chain node. 
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h) A path is a series of branches which join some nodes 

and it does not pass through a node more than once. 

i) A forward path is a path which starts from source 

node and ends at the sink node. 

j) A collection of loops is said to be nontouching 

if no two of the loops have a node in common. 

Example 11.1; Consider the following set of linear algebraic 

equations ; 

Xj = Xj^+3X2+2X3 

is the only dependent variable in the first equation. 

The SFG representation of the equation x^ = is; 

-4 

Figure 11-1 • SFG representation of equation: 

The summation is indicated by the converging arrows. It 

should be noted that if is treated as a dependent variable, 

then the corresponding SFG is unique. 

The SFG of the above set of equations is shown as 

follows ; 
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3 

-4 

Figure 11-2. SFG representation of equations of Example C-1 

11.1.2. Path inversion 

The process of interchanging the dependent variable and 

an independent variable is called path inversion. This 

process can be accomplished by rewriting the equation in 

terms of the new dependent variable and redrawing the graph 

or graphically by implementing the following steps. 

1) Change the direction of the arrow between the old 

and the new dependent variable and invert the 

branch transmittance. 

2) Divert the branches from the other independent 

variables and resources or initial condition to the 

new dependent variable. Divide their transmittance 

by the negative of transmittance of the branch 

connecting the new to the old dependent variable. 
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Example 11-2; Consider the equation 

= ax^ + bXg + cx^ + 

in which x^ is the dependent variable and x^^, x^r and x^ 

are independent variables. Assuming x^ is the new dependent 

variable the equation can be rewritten as follows; 

*1 " - & *2 - I *3 + i =4 - E 

The graphical representation of these equations are shown 

below; 

Figure ll-3a. SFG representation of equation; X. = ax_+bx_+ 
-1_W 4 X z 
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"1 
0 

I 

© 

Figure ll-3b. SFG representation of equation; 

- |X3 . |X, - |i 
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11.1.3. Method of solution of SFG 

S. J. Mason (1956) developed a general rule for finding 

the gain of a signal flow graph (SFG) for a linear system 

described by 

n 
I a.jX. = y. i = 1 m 

y. 
The gain Tj^^= — represents the linear dependence between 

a dependent variable y^ and an independent variable j->i 

is the transmittance or gain from node x. to node y.. 
] 1 

The gain T^^^ can be calculated from the corresponding 

signal flow graph by means of Mason's formula 

j-vi A 

where; 

L... = forward path from variable x. to y. 
] J X 

A = determinant of the graph 

A = 1-ZL. + SL.L. - EL.L.L, +... 
1 1 ] 1 ] k 

= summation of the gain of all loops in the graph 

= summation of the gain of all pairs of non-

touching loops in the graph 

EL.L.L. = summation of the gain of all triplet of 
1 3 K 

nontouching loops in the graph 

Aj^^ = cofactor of the path the cofactor Aj^^ 

is the determinant of the system with path 

Ljik removed. 
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C. S. Lorens (1964), S. J. Mason (1953), and Y. Chow and 

Cassignol (1962) give proof of the Mason's Formula. 

Example 11-3; Consider the signal flow graph shown below; 

2 

Figure 11-4. SFG representation of Example C-3 

Determine the gain between node x^ and x^. 

Solution: Applying Mason's Formula we find; 

^241 ~ (2)(4) = 8 

LI42 = (3)(5) = 15 

A = 1 - [2+(4) (l) + (+2) ] + [ (2) (+2) + (2) (4) (1) ] 

= 1 - 8 +  1 2  = 5  

*141 = 1 - 2 = -1 

AI42 = 1 - [+2+4] = -5 

T = (8) (-1) + (15) (-5) ^ 83 
14 5 5 
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Zadeh and Desoer (1963) show that the Mason's gain formula 

can be viewed equivalent to the Cremar's rule of solving a 

system of equation. 
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